TCN8X Series

High capacitance
product.thumbnail.alt TCN8X Series - Capacitors > Ceramic Capacitors > High Capacitance
  • High capacitance
  • Stacked technology
  • Formerly under the reference: TCN80, TCN83, TCN84, TCN86
  • Capacitance
470nF ~ 120µF
  • Tolerance
±10%, ±20%
  • Mounting
Radial
  • Operating Temp
-55°C ~ 125°C
  • RoHS
ROHS, Non ROHS
  • Voltage Rated DC
63V ~ 500V
  • Case size
-
  • Dielectric
X7R, X7R

Typical applications :

  • Switch Mode Power Supplies
  • Filtering
  • DC/DC converters

 

The below Part Numbers reflect our high runners only
Please contact us if you can't find your specifications.

Compliance and certifications
certification
CECC
Would you like to ajust a little something?

Customize it

You may also be interested in

Frequently Asked Questions

Find answers to the most frequently asked questions about our products and services.
What is Ceramic Capacitors

Excellent temperature resistance, high volume/capacitance ratio, electrical properties and reliability make Exxelia's ceramic capacitors ideal for a wide range of fields of application including medical implants, aircraft flight controls, switched-mode power supply in harsh environments, core samplers for petroleum exploration, and space vehicles. Exxelia also offers Hyper Frequency ceramic capacitors with optimized size and very low ESR. 

These HiQ capacitors offer excellent performance levels for RF applications requiring functional reliability. Typically these applications include civil and military telecommunications (cellular base station equipment, wireless broadband service, Point to-Point or Multipoint radios, radio broadcasting equipment), and MRI coils.

How is Ceramic used in Capacitors ?

Ceramic chips are created with binders and solvents added to a specified ceramic powder. The slurry created is dried, forming a sheet or tape of ceramic material. Metal powder is mixed with solvents and additional ceramic material to create a liquid electrode. The liquid is then printed onto the ceramic layer. Layers of the ceramic sheets are stacked and laminated to form a solid structure.

The solid structure is cut into the desired size. Once cutting is complete, the assembly must be kiln fired. The temperature used in the firing process is critical in determining the capacitor’s characteristics. The process is similar for disc and chip styles. Disc capacitors use long leads to mount through circuit boards. Chips use surface mount technology.

High Temperature Ceramic Capacitors

High temperature ceramic capacitors and high temperature mica capacitors are often used in situations that require a higher voltage or a higher power than normal. Because of the ways in which they are built, they can offer low ESR and excellent inrush current and ripple capabilities that other types of capacitors cannot. The only downside is that they tend to be physically larger than other types of capacitors.

The automotive industry is another area where high temperature capacitors are required. The temperature conditions can vary dramatically depending on what area of a car you’re talking about. The brake systems, the engine and the transmission are often the most temperature intensive areas.

Still have questions ?
Can’t find the answer you’re looking for ? Please contact with our customer service.
Contact